If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=168
We move all terms to the left:
x^2-(168)=0
a = 1; b = 0; c = -168;
Δ = b2-4ac
Δ = 02-4·1·(-168)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*1}=\frac{0-4\sqrt{42}}{2} =-\frac{4\sqrt{42}}{2} =-2\sqrt{42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*1}=\frac{0+4\sqrt{42}}{2} =\frac{4\sqrt{42}}{2} =2\sqrt{42} $
| −10x=-4 | | g+10=19 | | 180x=12(1200) | | 15x-2=28x-100 | | 7=m/19 | | 7(4h-12)=56 | | y=3.4=18 | | 7k=77* | | 31p+2p−17p+–9p−6p+–48=–2 | | 5m=4+24 | | 3x-1=2x+29 | | 2x+45=13x-54 | | 2=1/5cc= | | 8x+12=4x+52 | | 13x-9=3x+61 | | -20.9=10x | | 5(b+b)=18 | | 81d=405 | | (x-2)4=92 | | 10c+8=-2 | | (2x−1)^4=84 | | s=100*10 | | (0+x)^2/1.50-x=0.012 | | 4(x+3)=4x+12) | | (0+x)^2/1.50-x=1.2x10-2 | | 117=5x+2 | | (2x-4)^2+5=0 | | m-4.8=12 | | (0+x)^2/1.50-x=0 | | 3x-8/4=13 | | 1/3(x+7)=5 | | 134=16x-10 |